
The tool of thought for expert programming

Version 13.2

UNIX Installation and User Guide

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2013 by Dyalog Limited

All rights reserved.

Version: 13.2

Revision: 22186

Nopart of this publicationmay be reproduced in any form by any means without the prior written per-
mission of Dyalog Limited.

Dyalog Limitedmakes no representations or warranties with respect to the contents hereof and spe-
cifically disclaims any impliedwarranties of merchantability or fitness for any particular purpose. Dya-
log Limited reserves the right to revise this publicationwithout notification.

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The OpenGroup.

Windows, Windows Vista, Visual Basic andExcel are trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Array Editor is copyright of davidliebtag.com

All other trademarks and copyrights are acknowledged.

Contents

Introduction 1
Changes in 13.2 specific to UNIX 1
Overview 1
Entering Characters 3
Entering Commands 4
The Different Types of Input Windows 5
Driving the Dyalog APL tty version 6
Installation 14
Starting APL 20
Configuring a Console/terminal Window to support Dyalog APL for UNIX 22
Using PuTTY underWindows 23
Environment Variables 24
Configuring the Editor 29
Miscellaneous 31
Appendix A: Table of keycodes and keystrokes using a terminal emulator under Linux GUIs 41
Appendix B: Table of keycodes and keystrokes for PuTTY 44
Appendix C: Unused keycodes 47

Index 49

1

Introduction
This manual is designed to assist users of the non-GUI versions of Dyalog APL on
UNIX platforms. It applies to Versions 12.1 onwards.

Two versions of the interpreter are shipped with each Dyalog APL release: the devel-
opment version and the server version.

The server version has the same functionality as the development version, other than
that any attempt to read from the session, or use ⎕SM or use ⎕ARBIN will result in an
EOF INTERRUPT. It is mainly intended for using Dyalog APL as a server process,
where all I/O is processed using TCPSockets, or possibly via an auxiliary processor
written by the user. Dyalog recommends using Conga in preference to native
TCPSockets.

There are different licences associated with the development and server versions,
which affects how each might be distributed. For more information, please contact
sales@dyalog.com.

All examples are written assuming that the Korn shell is being used.

Changes in 13.2 specific to UNIX
SQAPL is now bundled with the Unicode Edition of Dyalog APL for Linux. It was
compiled against unixODBC 2.2.11.

The .deb files now define the pre-requisite filesets needed to run 32 bit interpreters
on 64 bit kernels. They also recommend the unixODBC driver filesets.

Links from xterm to screen now make it easier to run APL under screen. Simply run
screen -U.

If a core file is generated by a Dyalog APL process, both a core and an aplcore file
will be generated. If APL_TEXTINAPLCORE=1 additionally the useful information
section is included at the end of the aplcore file.

Overview
Dyalog APL was originally written for use with serially attached character based ter-
minals, which had a fixed-sized viewing window, and a limited number of key-
strokes.

This tty version is now usually run using either a terminal window in a GUI-based
windows manager, or a terminal emulation application such as PuTTY. Although

2 Dyalog APL for UNIX Installation and User Guide

these allow for a greater range of keystrokes, and for the resizing of the terminal win-
dow in which Dyalog APL is running, they still emulate the original ASCII ter-
minals, so the same techniques for controlling the display still apply.

It is possible to support most terminals or terminal emulators with the Dyalog APL
tty version, and it is possible for any user to define their own input translate table so
that the keystrokes to enter commands or characters can be unique to their envi-
ronment (similarly the output translate table defines the colour scheme etc). As such,
this document does not in general refer to the actual keystrokes which are used to
control Dyalog APL, but rather the keycodes to which keystrokes are mapped.

Indeed, much of the interface to Dyalog APL can be customised; this manual is
written assuming that no changes have been made to the default configuration.

3

Appendix A lists the mapping between keystrokes and keycodes for all commands
used when running under a terminal emulator/console under Linux; Appendix B lists
the keystrokes and keycodes used when running PuTTY, a windows terminal emu-
lator. Some keycodes are not relevant to the current tty versions of Dyalog APL; they
may have been used in previous tty versions, or used in versions no longer supported,
or are used in GUI-based versions of Dyalog APL. They are listed for completeness
in Appendix C, but attempting to make use of themmay lead to unexpected and/or
undesirable results.

The keyboard is used for two purposes: to enter text and to enter commands. In clas-
sic editions text is limited to characters defined in ⎕AV, in Unicode editions text can
consist of any valid Unicode character. The main issue which has to be resolved is
how to locate these characters and commands on the keyboard in such a way that
they can be entered in a consistent manner, and without conflicts with other char-
acters or functionality.

Given that the number of different characters and commands far exceeds the number
of keys on a keyboard, different methods are supported for allowing one key to be
used for more than one character or command. There are three methods that can be
used, and that can be combined:

1. Use a metakey with the keystroke. The metakey is held down at the same
time as the key to be pressed. Examples of metakeys are the Shift key, the
Control (Ctrl) key and the Windows Key (WindowsKey).

2. Define multiple modes for the keyboard. Certain keystrokes are reserved for
swapping between modes; the effect of hitting any other key differs depend-
ing on the current mode. This was extensively used for earlier versions of
Dyalog APL, which used Ctrl-o and Ctrl-n to swap between ASCII and
APL entry modes.

3. Define multiple temporary modes for the keyboard, those modes last for one
keystroke only. This is used for entering many commands in the tty version.

Entering Characters
It is necessary to select a metakey which is to be used to enter characters. In this doc-
ument this metakey is represented by the string “APL”. In a terminal window under a
Linux GUI Dyalog recommends using the Windows key as the metakey to generate
APL characters; with PuTTY and the Unicode IME the Control key is used (similarly
to the Windows Unicode edtion of Dyalog APL). So for example, in a terminal win-
dow <WindowsKey><a>generates an ⍺; when using PuTTY the same APL char-
acter is entered by using <Ctrl><a>. [Note that under PuTTY, Ctrl-xcv are reserved
for the operating system; we shall see later that Ctrl-x is used for another purpose.
Rather than <Ctrl>xcv you must use <Shift+Ctrl>xcv.]

4 Dyalog APL for UNIX Installation and User Guide

Entering Commands
Commands are either entered using the keys on the keyboard in conjunction with 0
or more metakeys, or when using the keyboard in different modes. A separate key-
stroke is used to move from one mode to the next; by default this is defined to be
Ctrl-x. When Dyalog APL is started, you are in mode 0. With the exception of
Move/Resize in the editor/tracer, all mode changes are effective for one keystroke
only.

Example:

l assume that you have just started APL
l assume that the WindowsKey is used to enter APL characters
l <>represents one keystroke, so <Ctrl+x><p> means: hit Ctrl+x then p

Keystrokes entered
How
described in
documentation

Outcome in Dyalog APL session

<p> p p appears in the session

<Shift+p> P P appears in the session

<WindowKey+p> APL p * appears in the session

<WindowsKey+Shift+p> APL P ⍣ appears in the session

<Ctrl+x><p> Cmd-p

No noticeable effect. This is the
command “Previous” (PV) used
for search/replace. Note how Nrm
in status line changes to Cmd
when Ctrl-x is hit and then back
to Nrm when the p is hit.

<Ctrl+x><Ctrl+x><p> CMD-p

No noticeable effect. This is the
command “Paste” (PT). Note how
Nrm in status line changes to
Cmd when Ctrl-x is hit, and then
changes to CMD when Ctrl-x hit
again, and then back to Nrm
when the p is hit.

<Ctrl+x><g> N/A

Nothing; this is an invalid
character in Cmd mode. Note
how Nrm in status line changes
to Cmd when Ctrl-x is hit, and
then back to Nrm when the g is
hit.

5

Notes:
1. the words "Nrm", "Cmd" and "CMD" are configurable.
2. in this example each mode is temporary, lasting for only one subsequent

keystroke.

The Different Types of Input Windows
The tty version of Dyalog APL comprises of four different types of window:

The Session window
There is one and only one session window. It is always present (although may be
obscured by other windows. It cannot be resized fromwithin APL (the terminal win-
dow or PuTTY session can be resized, and APL will respond to the resize event).

Edit windows
Multiple edit windows can be open at any time, each on a separate object. The con-
tents of edit windows can be altered, and these windows can be resized using the
Move/Resize (MR) command.

Trace windows
Multiple trace windows can be open at any time, one for each item on the stack.
These windows are read-only, but these windows can be resized using the Move/Re-
size (MR) command.

⎕SM (Screen manager) window
There can be only one ⎕SM window; it exists only when ⎕SM is not empty, and
becomes visible either when waiting for user input (using ⎕SR) or can be toggled to
using the HotKey (HK) command.

6 Dyalog APL for UNIX Installation and User Guide

Driving the Dyalog APL tty version
The session window always occupies the whole of the APL "screen"; it may however
be obscured by other windows. The session shows the expressions that have been
entered, along with any output generated by those expressions. History cannot in
general be altered or deleted; it is possible to alter lines in the history, but when
Enter (ER) is hit, the altered line is added to the bottom of the history, and the altered
line is reset to its original state.

The bottom line of the APL window is reserved for the status line. The status line is
considered at all times to be 79 characters wide. It is divided into several fields,
whose widths are fixed:

l The string "Search:"
l The current search string
l The string "Replace:"
l The current replace string
l The latest error message (is removed on next keystroke)
l The "name" field: this may contain the name of the workspace, or while in

the editor or tracer, the name of the current object
l The name of the current keyboard input mode (see later)
l Whether input is in insert or overwrite (replace) mode

Some error conditions generate text that does not become part of the session, yet is
written to the terminal. Additionally it is possible that other applications may write
to the terminal. In such cases, and when the emulator window is resized, it may be
necessary to perform a Screen Refresh (SR) which causes APL to rewrite the entire ter-
minal emulator window according to what it believes should be present; this will
effectively remove all extraneous text.

The session and the edit and trace windows form a loop; to cycle forwards between
windows use the command Windows Tab (TB), to cycle backwards use the com-
mand Reverse Windows Tab (BT). At any time you can use the command Jump (JP)
to toggle between the current edit/trace window and the session. Escape (EP) closes
the current window, having saved any changes (where appropriate); QuiT (QT)
 closes the current window, but without saving any changes.

It is possible to move and to resize an edit or a trace window; hit Move/Resize (MR)
to swap into this mode. In this mode the cursor keys move the current window
around (note that when the window reaches the edge of the screen, its size will in
many cases reduce as the opposite edge continues to move in the direction of move-
ment. Up one Screen (US), Down one Screen (DS), Left one Screen (LS) and Right
one Screen (RS) cause the right or bottommargin to extend or reduce as appropriate.
Note that if the right or bottom edge is against the right or bottom edge of the ses-
sion, then the window is made larger by "pushing" the left or top edge away as appli-
cable.

7

Trace windows are read-only; however, it is possible to edit the currently traced
object by hitting Edit (ED) while the cursor is on the first column of any line or by
hitting ED while the cursor is on the name of the object. However, both in the Editor
and Trace windows individual breakpoints (aka Stops) can be set and unset using the
Toggle Breakpoint (BP) command. The Clear Breakpoints (CB) command will cause
all breakpoints in the current object to be cleared. Note that by default there is no vis-
ible indication that either of these commands has been run; however, the output from
⎕STOP will show whether either of these commands has been run. See "Configuring
the Editor" for more details.

Edit windows and the session are read-write. By default input lines are in insert
mode. It is possible to toggle to overwrite mode by using the Insert Toggle (IN) com-
mand. Note that this mode allows you to generate those overstrike APL characters
which are supported by Dyalog APL; attempting to overwrite an existing character
with one that does not form a valid APL character results in the original character
being replaced with the newly-typed one. Destructive Backspace (DB) and Delete
Item (DI) delete the character immediately before the cursor and the character under
the cursor respectively. It is possible to define keycodes for Insert Item (II) and Non-
destructive Backspace (NB) and Non-destructive Space (NS) but these are not in gen-
eral use. Destructive Space (DP) is mapped to the Spacebar.

In an edit window Toggle Localisation (TL) will add the name currently under the
cursor to the end of the header line so as to localise that name if it was not already
present in the header; if the name is present in the header, it is removed from the
header. Redraw (RD) causes the function to be reformatted, with indentations added
etc.

It is possible to move or copy a line or a block of lines from one window to the other.
It is also possible to Cut (CT) from the cursor position to the end of the line and to
Paste (PT) the cut text; however, there is no other mechanism for selecting parts of a
line although you can use the mouse and the facilities of the terminal window or emu-
lator to move partial lines around. In this case you may find that it is best to have the
editor or tracer windows maximised to avoid copying the line drawing characters
that form the outline of the edit or trace windows too; Zoom (ZM) toggles windows
between maximised and standard size.

Use the Tag (TG) command to select contiguous lines of text; identify the initial line
with TG, move to the last line you wish to highlight and hit TG again. The next TG
command only removes the tagging from the currently tagged block - it does not
clear and initiate another selection. For Copy (CP) orMove (MV)move to the line
immediately above where the text is to be placed, and hit CP orMV as appropriate.
Use Delete Block (DK) to delete the highlighted lines. Note that it is possible to
copy or move text between edit windows and the session.

8 Dyalog APL for UNIX Installation and User Guide

Text searches can be made in all windows; the Search (SC) command defines the
search string; hitting Enter (ER) to complete the definition also moves the cursor to
the next instance of the search string in a forward direction. The Next (NX) and Pre-
vious (PV) commands moves the cursor to the next or previous instance of the search
string; when there are no more instances in the specified direction the error field will
contain either No Match→ or ←No Match.

Strings can be replaced in the Editor and Session windows; the cursor must be at the
start of an instance of the search string. Replace (RP) command is used to specify the
replacement string; if the cursor is at the start of an instance of the search string, that
instance will be replaced with the replacement string. The Repeat (RP) command
(also called Do) is used to make additional replacements. The Repeat All (RA) com-
mand will replace all instances of the search string with the replacement string in the
current object, both forwards and backwards from the current position; in this case
the cursor does not need to be at the start of an instance of the search string.

For both the Search and Replace commands EP is used to clear the definition of the
appropriate string; the entire field will be removed from the status line.

Dyalog APL responds to weak and strong interrupts; the kill operating system com-
mand can be used to send a signal 2 (SIGINT) or 3 (SIGQUIT) respectively, or the
user can hit the intr or quit keystrokes. The current mappings for these two key-
strokes can be seen by running the operating system command stty -a. The most
common keystrokes for intr and quit are Ctrl-C and Ctrl-\ respectively. Note that
when using PuTTY it will be necessary to swap out of the APL keyboard to generate
these keystrokes.

The tables below show the keystrokes that can be used in the different windows.

9

Commands Common to all Window Types

Command Code Description

Cursor Move

LC
RC
UC
DC

Left/Right/Up/Down one character

LS
RS
US
DS

Left/Right/Up/Down one screen

LL
RL
UL
DL

Left/Right/Up/Down to limit in that direction

HO Home Cursor .. to top left hand corner of object

Toggle line
numbers LN Turn line numbers on or off in all trace and edit

windows. This can be done from the session too

Screen Refresh SR
Causes APL to redraw the session, removing all
extraneous text that has come from external
sources and resetting the session display

Window Commands

Command Code Description

Move between
Windows

TB Move to next window in loop

BT Move to previous window in loop

JP Jump - toggle between session and current
window

Alter Windows

ZM Zoom - toggle window to full size and back

MR

Move/Resize:

LC/RC/UC/DC: move window in that direction

LS/RS/US/DS: move bottom right hand corner in
selected direction relative to top left hand corner

EP: exit move/resize mode

10 Dyalog APL for UNIX Installation and User Guide

Session Commands

Command Code Description

Redo/Undo
FD Show next line in input history

BK Show previous line in input history

Editor Commands

Command Code Description

Start/Stop

ED Start Editor (1)

EP Fix and Close

QT Abort and Close

Fix function FX Causes the function to be fixed, without quitting
the edit session

Redo/Undo
FD Reapply last change

BK Undo last change (where possible)

Outlines
MO When on the first or last line of a control structure,

move to the opposite end (2)

TO Open/Close outlined blocks(2)

Toggle local TL
For traditional functions, the name under the
cursor is either added or removed from the list of
localised names on the function's header line

Toggle
Breakpoint BP Toggles a breakpoint on the current line(3)

Clear
Breakpoints CB Clears all breakpoints in the current object(3)

Open Line OP
Opens a line underneath the current line; in insert
mode moving to the end of the line and hitting ER
is equally effective

Reformat RD(4) Causes the function to be reformatted, with
corrected indentation etc

Comments
AO(4) Add comment symbol at start of each tagged or

current line

DO(4) Remove comment symbol which is first non-space
character on each tagged or current line

11

Notes:
1. The editor can also be started using)ED or ⎕ED. Hitting ED in the session

with a suspended function on the stack will open the editor on that func-
tion; this is called Naked Edit.

2. By default outlines are not shown. See "Configuring the Editor" for further
details.

3. By default there is no visual indication that a breakpoint has been set,
although ⎕STOP will show the breakpoints. However, it is possible to view
breakpoints - see "Configuring the Editor" for further details.

4. AO, DO, RD only work in 13.1 onwards

Tracer Commands

Command Code Description

Start/Stop
TC Start Tracer(1)

EP Cut stack back to calling function; close all
windows to match new stack status

Execution

ER Execute current line

TC Trace into any and all functions on current line

FD Skip over current line

BK Skip back one line

Toggle
Breakpoint BP Toggles a breakpoint on the current line(2)

Clear
Breakpoints CB Clears all breakpoints in the current object(2)

Continue
RM Resume Execution - do not show trace windows

on next error or stop

BH Run to Exit - but show trace windows on error or
stop

Notes:
1. Hitting TC in the session with a suspended function on the stack will open

one trace window for each function on the stack; this is called Naked Trace.
2. By default there is no visual indication that a breakpoint has been set,

although ⎕STOP will show the breakpoints. However, it is possible to view
breakpoints - see "Configuring the Editor" for further details.

12 Dyalog APL for UNIX Installation and User Guide

Search and Replace Commands

Command Code Description

Define string

SC(1) Search: having hit Search, type string to search for,
and ER to find first occurrence. EP clears the field

RP(2)
Replace: having hit Replace, type string to replace
current search with; change will be effective once
ER is hit. EP clears the field

Find and
Replace

NX Locate next match downwards

PV Locate previous match upwards

RT Repeat (Do) the same action again

RA(3) Repeat all - in both directions

Notes:
1. Applies to session, editor and tracer
2. Applies to the session and editor only
3. Caution: the Repeat All replaces ALL matches in the current object

Session-related Commands

Command Code Description

Selection TG

Tag (highlight) blocks of text. Hit TG on initial
line, move to last line to be tagged and hit TG
again. Next TG clears the current tagging rather
than initiating a new tag

Block
commands

CP Copy highlighted block to below current line

DK Delete highlighted block

MV Move the highlighted block to below the current
line

Cut and Paste
CT Cut from current cursor position to end of line

PT Paste last Cut text immediately after cursor

13

ScreenManager Commands

Command Code Description

Move between
⎕SM and
session/trace/edit
windows

HK

With non-empty ⎕SM, toggle between ⎕SM
window and trace/edit/session window. HK is a
valid exit key for ⎕SR, but using it as such can be
confusing !

Exit keys
EP
QT
ER

Default exit keys for ⎕SR

14 Dyalog APL for UNIX Installation and User Guide

Installation
This manual covers the installation of the non-GUI version of Dyalog APL on AIX,
and on Linux distributions which use either .rpm or .deb files for installing software.
If you are using a Linux distribution which uses some other method, or you wish to
have a non-default installation, then there are some suggestions about how such an
installation might be completed.

Dyalog APL V12 onwards is supplied in either 32 or 64 bit versions, and in either
Classic or Unicode editions. The installation procedure for Dyalog APL is the same
in each case. Note that the 64-bit versions of Dyalog APL will only run on a 64-bit
operating systems; the 32-bit versions of Dyalog APL will run on both 32 and 64 bit
operating systems.

It is assumed that in all cases the installation image has been downloaded into /tmp
on the local machine.

The default installation subdirectory will be formed as:

/opt/mdyalog/<APLVersion>/<APLWidth>/<APLEdition>

or, in the case of AIX:

/opt/mdyalog/<APLVersion>/<APLWidth>/<APLEdition>/<platform>

So for example, Dyalog APL 12.1 32bit Unicode for POWER6 hardware on AIX
will by default be installed into

/opt/mdyalog/12.1/32/unicode/p6

whereas on a Linux distribution the equivalent version would be installed in

/opt/mdyalog/12.1/32/Unicode

This naming convention began with Version 12.0, and is planned to continue into
the future. This ensures that all versions and releases of Dyalog APL can be installed
in parallel.

Other than the Dyalog APL application shortcut (.desktop), Icon and the rpm/deb
related database information no files are created outside the Dyalog installation direc-
tory; in particular, unlike earlier versions of Dyalog APL, no files are placed in
/usr/bin.

When supplying updates or fixes, Dyalog issues a full installation image; this means
that any file under the installation subdirectory may be overwritten. It is therefore
strongly recommended that users do not alter issued files, as those changes could be
lost if an update is installed.

15

Installing under AIX
For each version of Dyalog APL on AIX three separate hardware-specific builds are
created for each of the four combinations of 32 or 64 bit versions, Classic or Unicode
editions. For 13.0 and prior these are p3, p5 and p6. For 13.1 onwards (as of Sep-
tember 2012) specific builds for p5, p6 and p7 are created.

$ su -
cd /opt
cpio -icdvum </tmp/dyalog-20090901-64-unicode-p6.cpi
/opt/mdyalog/12.1/64/unicode/p6/make_scripts
exit

Dyalog APL is now installed. To run as any user, type

$ /opt/mdyalog/12.1/64/unicode/p6/mapl

Notes:

l Version 12.1 onwards are compiled on AIX6.1: the 32 bit version of 12.1
has also been tested on AIX5.3 Technical Maintenance Level 9

Installing on an RPM-based Linux Distribution
$ su -
rpm -install /tmp/dyalog-121C32r14707-20120921.linux.i386.rpm
/opt/mdyalog/12.1/32/classic/make_scripts
exit

Dyalog APL is now installed. To run as any user, type

$ /opt/mdyalog/12.1/32/classic/mapl

Notes:
l It may be necessary to use the --force flag or equivalent if an earlier version

of Dyalog APL is to be installed on the same server as a later version. This
is safe since the versions have no files in common.

l It has been noticed that in some circumstances the 32-bit installs fail on 64-
bit operating systems due to a missing ncurses package. However, it appears
that that package is indeed installed. What is required however is the 32-bit
version: once installed, Dyalog APL will then install.

l Version 12.1 has been successfully installed on RHEL4/Centos4, and
SUSE10.3, and later versions of these distributions.

16 Dyalog APL for UNIX Installation and User Guide

Installing on a DEB-based Linux Distribution
$ sudo su -
dpkg --install dyalog-unicode_13.2.16658_i386.deb
exit

Dyalog APL is now installed. To run as any user, type

$ /opt/mdyalog/13.2/32/unicode/mapl

Notes:
l It may be necessary to use the --force flag or equivalent if an earlier version

of Dyalog APL is to be installed on the same server as a later version. This
is safe since the versions have no files in common.

l If dpkg generates dependency errors, run apt-get install -f (as root)
l It has been noticed that in some circumstances the 32-bit installs fail on 64-

bit operating systems due to a missing ncurses package. However, it appears
that that package is indeed installed. What is required however is the 32-bit
version: once installed, Dyalog APL will then install.

Installing in a non-default location
It is possible to install Dyalog APL for UNIX in non-default locations, without the
need for root privileges.

For all UNIXes,

cd <directory under which I wish to install Dyalog APL>

For AIX:

cpio -icvdum <installation_image.cpi

For .deb based Linux distributions:

/usr/bin/dpkg --extract installation_image.deb .

For .rpm based Linux distributions

rpm2cpio installation_image.rpm | cpio -icdvum

For all UNIXes:

find opt/mdyalog -name make_scripts -exec {} \;

This last step generates the mapl script; should you chose to move the installation
directory, it will be necessary to re-run the make_scripts script so that the envi-
ronment variable $DYALOG is set correctly.

17

Minimal Installation
An absolutely minimal installation of the development version of Dyalog APL con-
sists of something similar to one of the two following examples. The maximumwork-
space size would be 4MB, and all workspaces and auxiliary processors would have
to be accessed using either absolute or relative pathnames. It is not necessary to have
superuser permissions to perform this installation, since no files are being written to
directories for which the user does not have write permission.

In this example it is assumed that a full install has been completed of the 32-bit Uni-
code version on Linux. Once the files have been extracted, then the installation
could be removed. It is also assumed that suitable preparation of the terminal envi-
ronment has been completed (see Terminals and Terminal Emulators).

To set up:

$ mkdir dyalog_min
$ cd dyalog_min
$ mkdir aplkeys
$ mkdir apltrans
$ cp /opt/mdyalog/12.1/32/unicode/dyalog .
$ cp /opt/mdyalog/12.1/32/unicode/apltrans/xterm aplkeys
$ cp /opt/mdyalog/12.1/32/unicode/apltrans/xterm apltrans
$ cp /opt/mdyalog/12.1/32/unicode/apltrans/file apltrans

To run:

$ cd dyalog_min
$ export APLKEYS=`pwd`/aplkeys
$ export APLTRANS=`pwd`/apltrans
$./dyalog

Dyalog APL/S Version 12.1.0
Unicode Edition
Sun Oct 18 13:45:21 2009
clear ws

16 16⍴⎕av
...

or

To set up:

$ mkdir dyalog_min
$ cd dyalog_min
$ cp /opt/mdyalog/12.1/32/unicode/dyalog .
$ cp /opt/mdyalog/12.1/32/unicode/aplkeys/xterm xterm.in
$ cp /opt/mdyalog/12.1/32/unicode/apltrans/xterm xterm.out
$ cp /opt/mdyalog/12.1/32/unicode/apltrans/file .

18 Dyalog APL for UNIX Installation and User Guide

To run:

$ cd dyalog_min
$ export APLKEYS=`pwd`
$ export APLTRANS=`pwd`
$ export APLK=xterm.in
$ export APLT=xterm.out
$ export APLT10=file
$ export APLT11=file
$./dyalog

Dyalog APL/S Version 12.1.0
Unicode Edition
Sun Oct 18 13:45:21 2009
clear ws

16 16⍴⎕av
...

In the first example the input and output translate tables are in separate sub-
directories, so there is no need to override the TERM variable with values for APLK
and APLT.

In the second example the two translate tables both are named differently from the
value of $TERM, so each has to be defined. Note also that it may be necessary to
have the file output translate table present: like other UNIX processes, Dyalog APL
inherits the open file descriptors of its parent process, and each of themwill need to
have a translate table associated with it. So for example, under KDE4 on openSUSE,
a Konsole terminal window has file descriptors 0 1 2 10 11 open; Dyalog APL will
need therefore to have APLT10 and APLT11 defined too.

Further details regarding configuring the Dyalog APL environment can be found in
the Starting APL section.

Deinstalling Dyalog APL
In the following examples, it is assumed that only Dyalog APL 12.1 64-bit unicode
is installed on the server; the commands to delete directories will need to be more spe-
cific if multiple versions of Dyalog APL are installed.

Should it be necessary to deinstall Dyalog APL, then the process is:

Deinstalling under AIX
$ su -
cd /opt
rm -rf mdyalog/12.1

19

Deinstalling on an RPM-based Linux Distribution
$ su -
rpm -e dyalog.32.classic-12.1-20090901
cd /opt
rm -rf mdyalog/12.1
exit

Deinstalling on a DEB-based Linux Distribution
$ sudo su -
apt-get purge dyalog-unicode-132
cd /opt
rm -rf mdyalog/13.2
exit

Upgrading APL
Applying a later release of the same version
In general Dyalog will issue a new installation image if a problem is discovered
which requires a new version of the interpreter. Dyalog recommends that the entire
installation image is installed over the existing installation, but that is not essential.
Particularly in a live environment it may be preferable to install only a revised inter-
preter. This can be done by extracting the individual files from the installation
image, and copying them into the correct place in the installation directory tree. To
apply a fix image, run the appropriate installation command with the -force option if
appropriate. Be aware: the process of installing a later installation image over an
already installed version of Dyalog APLWILL result in all files being overwritten. If
you have changed any, it will be necessary to take copies of them, and then to reap-
ply local alterations to the new files. Please contact support@dyalog.com for further
advice.

Upgrading from an earlier version
Newer versions of Dyalog APL will be placed in new subdirectories, rather than in
the same location as the currently installed versions. This means that both old and
new versions can be run in parallel, but extra disk space in /opt will be required to
cater for the multiple releases. Note however that once a workspace has been saved
in a later version of Dyalog APL, it is most likely that it will not be possible to)
LOAD or)COPY the workspace by an earlier version. Once happy with the new ver-
sion, then de-install the earlier version.

20 Dyalog APL for UNIX Installation and User Guide

Starting APL
By default, to start the non-GUI versions of Dyalog APL, run the mapl script which
is in the installation directory of Dyalog APL.

Example:
$ /opt/mdyalog/12.1/32/classic/mapl

The mapl script is supplied so that the user can start to use Dyalog APL immediately
once the terminal environment has been setup. However, it should be treated more as
a template for creating a startup script more appropriate for the environment and pur-
poses that Dyalog will be used for.

The startup script usually sets a number of environment variables, and then calls the
interpreter with one or more of its parameters. Although all the examples are written
using the Korn shell, any shell can be used.

The parameters are listed in the table below; the more frequently used environment
variables are included in the following section.

Table 1: Parameters for the mapl script:

Parameter Purpose

-tty
Start APL using the terminal development environment. This is
not necessary unless the wine (-wine) or MainWin (-mainwin)
versions are installed too.

-c

-rt

-server

Causes dyalog.rt (the server version) to be started. This parameter
is for backwards compatibility; the use of the -rt or -server
parameter is recommended. See also the Note at the bottom of
this table.

-*
Any other parameter that starts with a "-" will be passed to the
interpreter; all parameters that start with a "-" will be passed
before any parameters that do not start with a "-".

*

This is usually the name of the workspace that is to be loaded
when the interpreter is started. Unless the "-x" flag is passed to
the interpreter, the latent expression in the workspace will be
executed once the workspace has been loaded.

Note:
l the -c parameter has different uses depending on whether it is passed to the

mapl script, or to the dyalog executable.

21

Table 2: Parameters for the Dyalog interpreter:

Parameter Purpose

-a

Start in "User mode". If not present, then APL will start in "Prog
(rammer) mode".

This refers to input translate tables, but is primarily meant for
backwards compatibility. See the section on I/O for further details.

-b Suppress the banner in the session.

-c

Comment: the "-c" and anything following it will be treated as a
comment, but will show up in a long process listing. By adding a
suitable comment the user or system administrator can uniquely
identify the individual APL processes.

See also the Note above this table.

-q

Continue to run even if an error causes a return to the six-space
prompt. Used when redirecting input to the session from a pipe
or file. If not used, then a return to the six-space prompt will
result in a CONTINUE being generated, and the interpreter
terminating.

+q suppress this behaviour.

-s Turn off the session: APL acts similarly to a scrolling terminal.

+s forces APL to enable the session.

-x
Do not execute the latent expression of any workspace that is)
LOADed or ⎕loaded. This applies to every)load or ⎕load
during the life of the APL session.

filename

This is assumed to be a workspace which will be loaded once
the interpreter has started. Unless the -x parameter is included on
the command line, the latent expression will be run immediately
after the load has finished.

22 Dyalog APL for UNIX Installation and User Guide

Configuring a Console/terminal Window to support
Dyalog APL for UNIX

In order to support Dyalog APL for UNIX in a console/terminal window under a
Linux window manager, it is necessary to install and configure the Dyalog APL key-
board support. Additionally it is possible to install the APL385 Unicode font, to be
used instead of the built in fonts which include APL characters.

Keyboard support
Dyalog submitted APL Language keyboard support to Xorg at the end of 2011; most
Linux distributions released after mid-2012 have the Dyalog APL keyboard support
included with the distribution. Such distributions include openSUSE 12.2, Ubuntu
12.10 and Fedora 17.

Details of how to configure the keyboard under KDE4 appear below; keyboard sup-
port for other window managers (such as Gnome and Unity) is in a state of flux. The
latest information about the process of installing and configuring Dyalog APL key-
board support for such environments can be found at:

http://forums.dyalog.com/viewtopic.php?f=20&t=210

or by contacting Dyalog support. The same resources can be used to obtain infor-
mation and guidance on installing keyboard support for earlier Linux distributions.

Configuring the APL keyboard under KDE4
(These instructions were drawn up using openSUSE 12.2; other KDE4 environments
may vary slightly)

l Select Configure Desktop
l Select Input Devices
l Select Keyboard
l Select Layouts
l Select the "Configure layouts" tickbox
l Select Add
l In the Add Layout dialog box, select the Layout "APL Keyboard Symbols",

and then the "dyalog" option
l Close the Add Layout dialog box
l The list of layouts should now include APL Keyboard Symbols, with one

of the dyalog variants.
l Click on "Main shortcuts" in the "Shortcuts for Switching Layout" group;

where possible, Dyalog recommends selecting "Any Win key (while
pressed)" so that either Windows key causes APL characters to be gen-
erated.

23

APL font support
APL characters are available under Linux window managers. However some of the
characters may appear inelegant; most noticeable are very small "⋄" and overly large
"⌶". To resolve this, it is possible to use the Freemono fonts (these are installed by
default on some distributions (such as openSUSE)), or to download and install the
APL385 Unicode font. This font is freely downloadable from:

http://www.dyalog.com/resources

Details of how to install the font will appear in the documentation for your window
manager.

Using PuTTY under Windows
Dyalog APL for UNIX comes with support for the PuTTY terminal emulator. PuTTY
is freely downloadable, supports ssh and telnet protocols, and supports Unicode key-
strokes and fonts. To be able to generate and see APL characters it is also necessary
to install the Dyalog UnicodeIME and the APL385 Unicode font.

Downloading and installing the Dyalog UnicodeIME
The UnicodeIME can be freely downloaded from http://www.dyalog.com/resources.
It is also included with all Unicode Windows versions of Dyalog from 13.0 onwards.
There are two versions of the UnicodeIME; one for 32 bit Windows, and one for 64
bit; please ensure that the correct version is downloaded.

Details of how to install the UnicodeIME are on the download webpage.

Downloading and installing the APL385 font
The APL385 can be freely downloaded from http://www.dyalog.com/resources.
Details of how to install the font appear on the download webpage.

Downloading and Installing PuTTY
PuTTY is available from http://www.chiark.greenend.org.uk/~sgtatham/putty. Full
details of how to download and install PuTTY, along with the licence terms and con-
ditions are available from the above URL.

Configuring PuTTY to support Dyalog APL for Unix
Firstly ensure that you are able to login to the UNIX server which has Dyalog
APL installed on it. If you are using an AIX server, it is recommended that in the
Keyboard category you set the backspace key to Control-H.

24 Dyalog APL for UNIX Installation and User Guide

For APL support the follow settings are required:

Window/Appearance Font settings/Font: set to APL385 Unicode

Window/Translation/Character set translation on received data: set Received data
assumed to be in which character set to UTF-8

Having set these values, it is recommended that you save the settings; if you will
need to connect to multiple servers, it is recommended that you save the above set-
tings as the default options (Highlight the "Default Settings" in Saved Sessions and
click on Save).

Environment Variables
Environment variables are used to configure various aspects of Dyalog APL. The
complete list appears in the Dyalog APL Users Guide; this section discusses those
variables which are of particular importance to the Non-GUI versions of Dyalog
APL, and lists those that have meaning to the UNIX versions. Additionally there
some non-GUI-specific variables which are described below and some which either
do not apply, or may not work as the user might at first expect.

Under UNIX, all environment variables should appear in UPPER CASE. For exam-
ple, to set the default value of ⎕ml to 3, then

$ export DEFAULT_ML=3

Many of these environment variables are set in the mapl script; their values are either
appropriate for the installation location of Dyalog APL, or are set to define rea-
sonable default values.

The environment variables are broken down into several tables:

l Table E1: The most commonly defined and used for non-GUI versions of
Dyalog APL under UNIX. Most of these variables are essential for a usable
APL session

l Table E2: Variables used to control default values in the workspace
l Table E3: Variables used to configure buffers and logfiles etc
l Table E4: Miscellaneous Variables used by non-GUI Dyalog APL
l Table E5: Editor-related environment variables

25

Table E1: Commonly used Variables

Variable Notes

TERM
APLK
APLK0
APLT
APLTn

Define the input and output translate tables used by
Dyalog APL. The values of APLK0 and APLTn override
the values of APLK and APLT is set, and they in turn
override the value of TERM if set.

APLK is for input translation, APLT for output
translation.

These are used in conjunction with ..

APLKEYS
APLTTRANS

Define the search path for the input and output translate
tables respectively. If unset, the interpreter will default to
/usr/dyalog.

APLFSCB
FILE_CONTROL

Defines the method used for multi-user access of Dyalog
component files, and the location of the APL FileSystem
Control Block if FILE_CONTROL=1.

In earlier versions of Dyalog APL the APLFSCB method
was the default for ensuring coherent multi-user access of
Dyalog APL component files. It is now recommended
that this is replaced with the default FILE_CONTROL=2
– using standard operating system facilities.

Note: it is essential that all users sharing the same
component files use the same FILE_CONTROL
mechanism, and if using APLFSCB, the same FSCB file.
Without these precautions component files WILL
become corrupted.

APLNID
This variable is ignored by the UNIX versions of Dyalog
APL: ⎕ai and ⎕an pick up their values from the user's
uid and /etc/passwd.

APLSTATUSFD

If set, this defines the stream number on which all
messages for the Status Window appear. It is then
possible to redirect this output when APL is started.

If unset, the output will appear in the same terminal
window as the APL session, although it is not part of the
session; such output can be removed by hitting SR
(Screen Redraw - often defined to be Ctrl-L).

26 Dyalog APL for UNIX Installation and User Guide

Variable Notes

LIBPATH
A suitable entry for the Conga libraries needs to be
added to the LIBPATH variable if Conga is to be used.
For more information see the Conga Guide.

MAXWS

Defines the size of the workspace that will be presented
to the user when Dyalog APL is started. A simple
integer value will be treated as being in KB. K, M and
G can be appended to the value to indicate KiB, MiB
and GiB (binary) respectively. If unset, the default value
is 4096KB.

WSPATH

Defines the search path for both workspaces and
Auxiliary processors.

If unset, there is no default value. Workspaces and APs
that are not on the WSPATH can be accessed using
absolute or relative pathnames.

Table E2: Default workspace values

Variable Notes

DEFAULT_DIV Default value for ⎕div in a clear workspace.

DEFAULT_IO Default value for ⎕io in a clear workspace.

DEFAULT_ML Default value for ⎕ml in a clear workspace.

DEFAULT_PP Default value for ⎕pp in a clear workspace.

AUTO_PW
DEFAULT_PW

⎕pw is set by the interpreter when it starts, or when the
session window is resized. Under UNIX if the terminal
window is resized, the session will be resized when the
interpreter next checks for input.

DEFAULT_RL Default value for ⎕rl in a clear workspace.

DEFAULT_RTL Default value for ⎕rtl in a clear workspace.

DEFAULT_WX

Default value for ⎕wx in a clear workspace.

Note that although the UNIX versions of Dyalog APL do
not have GUI objects, ⎕se is present, and the value of
⎕wx will affect the programmer's ability to run
expressions such as ⎕se.PropList.

27

For numeric values, the interpreter takes the value of the environment variable, and
prepends a "0" to that string. It then parses the string, accepting characters until the
first non-digit character is reached.

This string, now of digits only, is converted into an integer. If the resulting value is
valid, then that is the value that will be used in the workspace. If the resulting value
is invalid, then the default value will be used instead.

Table E3: Variables used to configure buffers and logfiles etc

Variable Notes

HISTORY_SIZE The size of the prior line buffer

INPUT_SIZE The size of the buffer used to store lines marked for
execution

LOG_FILE
LOG_FILE_INUSE
LOG_SIZE

These three variables determine the name of the session
log file (default ./default.dlf), whether a log file is
created or not, and the size of the log file in KB. Be
aware: the session log file is not interchangeable
between the different editions and widths of APL; in a
mixed environment it is strongly recommended to use a
different log file for each version.

PFKEY_SIZE
The size of the buffer used to hold ⎕pfkey definitions:
if this is too small, an attempt to add a new definition
will result in a LIMIT ERROR.

SESSION_FILE Defines the location of your session file; session file
support was added in Dyalog 13.1.

To set values, use K to indicate KB. Note that the buffers will contain other infor-
mation, so the buffer size will not be exact. Note also that multibyte Unicode char-
acters will take up more space than single byte characters, and that 32 and 64 bit
versions of Dyalog APL can require different amounts of space for holding the same
information.

Example:

$ HISTORY_SIZE=4K my_apl_startup_script

28 Dyalog APL for UNIX Installation and User Guide

Table E4:Miscellaneous Variables used by non-GUI Dyalog APL

Variable Notes

APLFORMATBIAS See the Language Reference for more details.

AUTOFORMAT
TABSTOPS

If AUTOFORMAT is 1, then control structures will be
shown with indents, set at TABSTOPS spaces; the
changes are reflected in the editor window when the
RD (ReDraw) command key is hit.

AUTOINDENT

AUTO_PW

Introduced in 13.0. With AUTO_PW=0, ⎕pw remains
fixed at the size of the terminal window when APL was
started. When set to 1, or unset, ⎕pw alters each time
the terminal window is resized.

DYALOG

This variable is defined in the supplied mapl startup
script, and is used to form the default values for
APLKEYS, APLTRANS,WSPATH etc.

If it is necessary to identify the location of the Dyalog
executable, then a more reliable method is to determine
the full path name from the appropriate file in the
/proc/<process_id_of_APL_session>/ subdirectory or
from the output of ps.

These are the remaining variables listed in the User Guide which are effective in the
non-GUI UNIX versions of Dyalog APL

Table E5: Editor-related environment variables

Variable Notes

EDITOR_
COLUMNS_*

More details below. Can be one of

EDITOR_COLUMNS_CHARACTER_ARRAY
EDITOR_COLUMNS_CLASS
EDITOR_COLUMNS_FUNCTION
EDITOR_COLUMNS_NAMESPACE
EDITOR_COLUMNS_NUMERIC_ARRAY

LINES_ON_
FUNCTIONS

Whether line numbers are on or off. This is used in
conjunction with the variables which determine which
features of the editor are enabled.

29

Configuring the Editor
The editor in non-GUI versions of Dyalog APL can be considered to have 5 separate
functional columns. Below is the contents of the editor window, which shows the
namespace ns, which has two traditional-style functions and one dfn. The statement
5 ⎕STOP 'ns.fn1' has been run too:

[0] :Namespace ns
[1] [0] ├ ∇ r←fn1 a
[2] [1] ├ :If a=1
[3] [2] │ r←1
[4] [3] │ :Else
[5] [4] ├ :If today≡'Friday'
[6] [5] ○│ r←2
[7] [6] ├ :EndIf
[8] [7] ├ :EndIf
[9] [8] ├ ∇
[10]
[11] [0] dfn←{⍺+⍵}
[12]
[13] [0] ├ ∇ r←a fn2 w
[14] [1] │ r←a+w
[15] [2] ├ ∇
[16] :EndNamespace

This is formed of 5 separate columns:

┌────┬───┬───┬──┬────────────────────────────┐
│C1 │C2 │C3 │C4│C5 │
├────┼───┼───┼──┼────────────────────────────┤
│[0] │ │ │ │:Namespace ns │
│[1] │[0]│ │├ │ ∇ r←fn1 a │
│[2] │[1]│ │├ │ :If a=1 │
│[3] │[2]│ ││ │ r←1 │
│[4] │[3]│ ││ │ :Else │
│[5] │[4]│ │├ │ :If today≡'Friday'│
│[6] │[5]│ ○││ │ r←2 │
│[7] │[6]│ │├ │ :EndIf │
│[8] │[7]│ │├ │ :EndIf │
│[9] │[8]│ │├ │ ∇ │
│[10]│ │ │ │ │
│[11]│[0]│ │ │ dfn←{⍺+⍵} │
│[12]│ │ │ │ │
│[13]│[0]│ │├ │ ∇ r←a fn2 w │
│[14]│[1]│ ││ │ r←a+w │
│[15]│[2]│ │├ │ ∇ │
│[16]│ │ │ │:EndNamespace │
└────┴───┴───┴──┴────────────────────────────┘

30 Dyalog APL for UNIX Installation and User Guide

Functional
Column

Value
(see
below)

Purpose

C1 4 Line numbers for entire object

C2 64 Line numbers for functions etc. within scripted
namespaces

C3 2 Trace/Stop points

C4 8 Control Structure Outlining

C5 16 Text (or content)This value is ignored; this column is
always present

It is possible to control at startup time which of these columns are visible. By default,
for all types of object, only the text column is visible; this can be overridden on a
per-object basis by setting one or more of the EDITOR_COLUMNS_ variables listed
in Table E5. The value of these variables is the sum of the values for each of the col-
umns which are desired.

Examples:
EDITOR_COLUMNS_NAMESPACE=94 shows all columns (the first example in
this section)

Various values for EDITOR_COLUMNS_FUNCTION

Value Editor window appearance

0
fn1 a
:If a=1

b←2
:EndIf

22

[0] fn1 a
[1] :If a=1
[2] ○ b←2
[3] :EndIf

26
fn1 a

 ├ :If a=1
○│ b←2
 ├ :EndIf

40
[0] fn1 a
[1] ├ :If a=1
[2] ○│ b←2
[3] ├ :EndIf

31

Miscellaneous
Running from scripts
Dyalog APL can be run with input being directed from a script file, and output being
redirected as well.

The script file needs to be built in such a way that it contains valid input according
to the input translate table that is defined in the APLK variable.

The classic edition of Dyalog APL expects that the input script by default uses Ctrl-
O and Ctrl-N to swap between APL and ASCII characters, and Ctrl-H is used to
create overstrikes. Be aware that when editing such an input file, cut and paste of ^H,
^N or ^O may well result in the two character sequences being copied, rather than the
single character Ctrl-H, Ctrl-N and Ctrl-O.

The Unicode edition by default expects that the input file has unicode characters in
it; a unicode-aware editor is therefore required. Note however that applications such
as Notepad will add BOMs (Byte OrderMarkers) to the unicode text; these must be
removed as the Dyalog APL input translate table does not have BOMs defined in it.

The example below shows the same set of APL expressions as they would appear in a
script file for Classic and Unicode editions: it is rather easier to read the Unicode edi-
tion's input !

Classic example:
^O(2^NLnqK.K K^OGetBuildID^NK^O),
(^NK.KLwgK^OAPLVersion^NK^O)
^Ovar^N[1+1 J^HC^O Check input from file: Classic
)si
^N"si
^Nloff

Unicode example:
(+2⎕nq'.' 'GetBuildID'),('.'⎕wg'APLVersion')
var←1÷1 ⍝ Check input from file: Unicode
)si
)si
⎕off

The file command and magic
All Dyalog APL binary files have a unique magic number: the first byte is always
0xAA (decimal 170), and the second identifies the type of Dyalog file. Additional
bytes may in some cases be used to further identify the type, version and state of the
file. UNIX systems include the file command which use the information in the
magic file to describe the contents of files.

32 Dyalog APL for UNIX Installation and User Guide

magic and AIX
AIX still uses a very early version of magic, so it is not possible to give as much
information about Dyalog APL files as on Linux.

Dyalog provides a file, magic, which is located in the top level installation direc-
tory of Dyalog APL. To use this file to extend the capabilities of the file command
either run

file -m /opt/mdyalog/12.1/32/classic/p5/magic *

or catenate the contents of /opt/mdyalog/12.1/32/classic/p5/magic onto /etc/magic,
and then run

file *

Example:
$ file -m /opt/mdyalog/12.1/32/classic/p6/magic *
1_apl_j1: Dyalog APL component file 64-bit level 1 journaled non-
checksummed
1_apl_j2: Dyalog APL component file 64-bit level 2 journaled
checksummed
1_apl_qfile: Dyalog APL component file 64-bit non-journaled non-
checksummed
1_big1: Dyalog APL component file 64-bit level 2 journaled
checksummed
1_big2: Dyalog APL component file 64-bit level 1 journaled
checksummed
apl64u: Dyalog APL workspace type 12 subtype 4 64-bit unicode
big-endian
aplout: Dyalog APL workspace type 12 subtype 0 32-bit classic
little-endian
aplcore: Dyalog APL workspace type 12 subtype 4 32-bit classic
little-endian
colours: Dyalog APL workspace type 12 subtype 4 32-bit classic
little-endian
core: data or International Language text
signals: Dyalog APL workspace type 12 subtype 4 32-bit classic
little-endian
utf8: Dyalog APL workspace type 12 subtype 4 32-bit unicode
little-endian

magic and Linux
Most Linux distributions include details about Dyalog-related files in their magic
files; Dyalog has submitted two versions of the magic file for inclusion in dis-
tributions. To check whether your Linux distribution has the more recent version,
create a journaled component file and then run the file command against that com-
ponent file. The two examples below show the output with the earlier and later ver-
sions of magic in use.

33

Example, using the older default magic file:
$ file *
1_apl_j1: data
1_apl_j2: data
1_apl_qfile: data
1_big1: data
1_big2: data
apl64u: \012- Dyalog APL\012- workspace\012- version 12\012- .4
aplout: \012- Dyalog APL\012- workspace\012- version 12\012- .0
aplcore: \012- Dyalog APL\012- workspace\012- version 12\012- .4
colours: \012- Dyalog APL\012- workspace\012- version 12\012- .4
core: ELF 32-bit LSB core file Intel 80386, version 1 (SYSV),
SVR4-style
signals: \012- Dyalog APL\012- workspace\012- version 12\012- .4
utf8: \012- Dyalog APL\012- workspace\012- version 12\012- .4

Example, with more recent magic file:
$ file *
1_apl_j1: Dyalog APL component file 64-bit level 1 journaled non-
checksummed
1_apl_j2: Dyalog APL component file 64-bit level 2 journaled
checksummed
1_apl_qfile: Dyalog APL component file 64-bit non-journaled non-
checksummed
1_big1: Dyalog APL component file 64-bit level 2 journaled
checksummed
1_big2: Dyalog APL component file 64-bit level 1 journaled
checksummed
apl64u: Dyalog APL workspace type 12 subtype 4 64-bit unicode
big-endian
aplout: Dyalog APL workspace type 12 subtype 0 32-bit classic
little-endian
aplcore: Dyalog APL workspace type 12 subtype 4 32-bit classic
little-endian
colours: Dyalog APL workspace type 12 subtype 4 32-bit classic
little-endian
core: ELF 32-bit LSB core file Intel 80386, version 1 (SYSV),
SVR4-style, from '/opt/mdyalog/12.1/32/classic/dyalog'
signals: Dyalog APL workspace type 12 subtype 4 32-bit classic
little-endian
utf8: Dyalog APL workspace type 12 subtype 4 32-bit unicode
little-endian

The most recent version of the magic file can be found in the top level of the instal-
lation directory; see the man page for the file command for details of how to update
the systemmagic file, or use the syntax described in the /etc/magic and AIX section
above to override the default magic file with the one supplied in the installation
directory.

34 Dyalog APL for UNIX Installation and User Guide

File permissions and ⎕FSTAC
Dyalog APL is a well behaved UNIX program and honours all standard UNIX file
permissions. Commands such as ⎕FLIB and)LIBread the magic number (the first
few bytes) of each file in the directory in order to determine whether each file is a
component file or workspace respectively; if the APL process cannot read those
bytes, then it will assume that the file is not a component file or workspace.

Under UNIX, the first element of ⎕AI is the user's effective uid, and ⎕AN reports the
user's name, as it appears in /etc/passwd. When a component file is newly created, its
UNIX file permissions will be defined by the umask for that user. The APL file
access matrix will be (0 3⍴0), which means that even if the user's UNIX file per-
missions are such that anyone can read and write to the file, only the user in question
will be able to access the file using Dyalog APL component file system functions. To
allow any user to access the file (assuming that the UNIX file permissions are suit-
able) then run

(1 3⍴0 ¯1 0)⎕fstac tieno

Any user with an effective uid 0 will be able to access any component file, irre-
spective of the file access matrix.

Session logfile
By default the session logfile is called default.dlf, and if necessary will be created in
the current working directory. (The mapl script supplied by Dyalog overrides this).

Status window output
By default under UNIX what would appear in the status window in the GUI versions
appears in the same terminal window as the APL session, but the text is not part of
the session. If such text appears, the APL session can be redrawn using the SR com-
mand, thus removing the status window text.

In V12.1 onwards it is possible to redirect the status window output; to do so select
an unused stream number as the stream have the status window output appear on, and
then redirect that stream. Note that it will be necessary to associate a valid output
translate table (usually apltrans/file) with that stream.

Example:

$ export APLSTATUSFD=9
$ export APLT9=file
$ mapl 9>/dev/null

More useful may be to redirect the status window output into a file, and in another
terminal window run tail -f on that file.

35

Signals and ⎕TRAP, ⌶4007
Signals and ⎕TRAP
Certain signals sent to a Dyalog APL process can be trapped and an event issued.
These signals are:

1 SIGHUP

2 SIGINT

3 SIGQUIT

15 SIGTERM

No other signal is trapped by the interpreter; their default action will occur. For exam-
ple when a Dyalog APL process receives a SIGSEGV (11) then it will terminate with
a segmentation fault. Note that SIG_USR1 is used by the interface between Dyalog
APL and Auxilliary Processors: sending this signal to the interpreter may have "inter-
esting" consequences.

The mapping between these signals and the event issued is non-trivial:

l If a SIGHUP is received, then the input stream is closed immediately, and
an event 1002 will be issued at the end of the current line of code. Any sub-
sequent attempt to read from the session will result in an EOF INTERRUPT
being issued.

l If a SIGINT is received, then execution will end at the end of the current
line of code. An event 1002 will be issued.

l If a SIGQUIT is received, then APL will terminate executing the current
line of code as soon as possible - usually at the end of the current built-in
command, and an event 1003 will be issued. However, if the end of the cur-
rent line is reached, then an event 1002 will be signalled.

l If a SIGTERM is received, then the input stream is closed immediately, and
an event 1002 will be issued at the end of the current line of code. Any sub-
sequent attempt to read from the session will result in an EOF INTERRUPT
being issued.

36 Dyalog APL for UNIX Installation and User Guide

⌶4007
To aid the programmer in determining which signal was issued, the newly imple-
mented system operator, ⌶ (I-Beam) has been extended to report this information.

WARNING: Although documentation is provided for I-Beam functions, any service
provided using I-Beam should be considered as "experimental" and subject to change
- without notice - from one release to the next. Any use of I-Beams in applications
should therefore be carefully isolated in cover-functions that can be adjusted if nec-
essary.

4007⌶⍬ can be used to identify which signals have been received by the APL proc-
ess and how many of them have been received. A side effect of calling 4007⌶⍬ is to
reset all counters to 0.

4007⌶⍬ returns a vector of integers; the length is dependent on the APL interpreter
and the operating system, but is typically 63 or 255 elements long. Each element is a
count number of each signal received and processed by the interpreter. Note that
when a SIGQUIT is received by APL the count for both SIGINT and SIGQUIT will
be incremented by one.

Example:
8↑4007⌶⍬

1 4 2 0 0 0 0 0

This means that since either the start of the current APL process, or since the last invo-
cation of 4007⌶ APL has processed 1 SIGHUP, 2 SIGINT and 2 SIGQUIT.

It is recommended that rather than trapping either event 1002 or 1003, the user traps
event 1000, and queries the vector returned by 4007⌶⍬. In particular if a SIGHUP or
a SIGTERM has been received, then the user's code should terminate the application
as soon as possible, and should be careful to avoid requiring input. SIGHUP has
either been issued using the kill(1) command, or because either the device at the
other end of the connection or the connection has terminated. This used to be com-
mon with serial or dialup terminals, but is now most frequently seen when terminal
emulators or the PCs on which they run are terminated.

⎕SH, exit codes and stderr
Note that ⎕SHcalls /bin/sh; this cannot be altered.

If the command, or command pipe issued using ⎕SH exits with a non-zero exit code,
then ⎕SH will terminate with a DOMAIN ERROR, and all output from the command
will be lost. To avoid this, add an exit 0 to the end of the command string, and the
DOMAIN ERROR will be suppressed. However, this technique does require that some
other method is used to determine that the command pipe failed.

37

Example:
⍴⎕SH 'grep no_such_user /etc/passwd'

DOMAIN ERROR
⍴⎕SH 'grep no_such_user /etc/passwd'

∧

but

⍴⎕SH 'grep no_such_user /etc/passwd ; exit 0'
0

⎕SH only captures stdout; unless redirected, any output on stderr will appear in the
same terminal window as the session; hitting RD (default Ctrl-L) will force a screen
redraw, thereby returning the session to its state before the error output appeared.

⎕SH and starting jobs in background
It is possible to run tasks fromwithin APL using ⎕SH:

⎕sh'myjob'

However, in this case, APL will wait until myjob has completed, and will return the
output frommyjob (assuming that is that myjob completes with a non-zero exit
code). It is possible to start a job that will run in background, without APL waiting
for that job to complete, with the job continuing even if APL is terminated:

Example:

⎕sh 'sleep 40000 </dev/null >/dev/null 2>&1 &'

More useful might be to save the stdout and stderr of the command, and pipe the
input in from a file; it might also be useful to have the job continue to run even after
the user has both quit APL and logs out from the server:

⎕sh 'nohup myjob <my.in >my.out 2>my.err &'

BuildID
In Version 12.1 of Dyalog APL for UNIX, it is now possible to identify the BuildID
of each interpreter. This is a checksum of the interpreter (or indeed any other file)
which can be used to identify the particular build. It is not unique, but is a 32-bit
checksum, so clashes should be rare.

Dyalog Ltd request that the BuildID of the interpreter is included when asking for
assistance; Dyalog keeps a record of the BuildID of every interpreter that is com-
piled, so that it can quickly identify the exact details (date, version, build platform
etc) which assist in resolving questions and problems. Dyalog recommends that espe-
cially in multi-server environments or environments where there are multiple ver-
sions of Dyalog APL that a record of the BuildID of every interpreter is kept.

38 Dyalog APL for UNIX Installation and User Guide

The BuildID is included in binary form in any aplcore that is generated; if a core file
is created, then is it possible to identify the BuildID using the following command:

$ strings -a -n 14 core | grep “BuildID=”

This information can be used by the user to identify which interpreter had the prob-
lem which caused the core file.

BuildID can be used for any file; it is a useful method of keeping track of workspaces
versions etc., although md5sum and others may be more appropriate.

The BuildID can be identified both fromwithin the interpreter, and also from the
BuildID executable which is supplied with the product.

Examples:
At the command line:

$ cd /opt/mdyalog/12.1/32/classic/p6
$./BuildID dyalog
70a3446e
$./BuildID magic
0a744663

In APL:

+2 ⎕nq '.' 'GetbuildID'
70a3446e

magicfile←'/opt/mdyalog/12.1/32/classic/p6/magic'
+2 ⎕nq '.' 'GetBuildID' magicfile

0a744663
)sh

$ echo $PPID
$ kill -11 $PPID
/opt/mdyalog/12.1/32/classic/p6/mapl[58]: 274434
Segmentation fault(coredump)
$ strings -a -n14 core | grep BuildID=
BuildID=70a3446e

Core and aplcore files
When Dyalog APL encounters an unexpected problem it is likely that the interpreter
will terminate and generate either a core file or an aplcore file. Under Linux core files
are not created by default; it is necessary to enable their creation.

An aplcore file contains the workspace at the point where the interpreter terminated,
along with debug information that may enable Dyalog to identify and rectify the
problem.

39

The Dyalog support department (support@dyalog.com, other means of contact on
the Dyalog website) should be contacted if an aplcore file is generated. More imme-
diately it may be possible to copy the contents of the aplcore into a new Dyalog proc-
ess by running

)copy aplcore

Note however that it is possible that the)COPY itself will cause another aplcore; it is
best to rename the original aplcore before attempting this course of action.

FromVersion 13.2 onwards in situations where a core file is generated, an aplcore
file will be generated too; this is done by forking the failing APL process, so an addi-
tional APL process will appear in any process listing while the aplcore is being
created. If the environment variable APL_TEXTINAPLCORE is set and has the value
1 then an "Interesting Information" section is appended to the aplcore which contains
information such as the APL stack, the WSID of the originating workspace etc. This
section can be extracted from an aplcore using

sed -n '/======== Interesting Information/,$p' aplcore

40 Dyalog APL for UNIX Installation and User Guide

41

Appendix A: Table of keycodes and keystrokes using
a terminal emulator under Linux GUIs

Keycodes, their common keystrokes, and the keystrokes specific to terminal emu-
lators under Linux GUIs.

Notes:
1. APL represents the metakey used as the APL character and command shift
2. Cmd represents the keystroke <Ctrl-x>
3. CMD represents the keystrokes <Ctrl-x><Ctrl-x>
4. The file $DYALOG\aplkeys\xterm is certain to be uptodate and should be

treated as the definitive source of the keycode-keystroke translations

Keycode Command Common
keystrokes Terminal Emulator

AO Comment Out Cmd ,

BH Run to Exit Cmd < APL+Left

BK Back Cmd b APL+Up

BP Toggle Breakpoint CMD b APL+Backspace

BT Back Tab Window CMD Tab Shift+APL+Tab

CB Clear Breakpoints CMD B Shift+APL+Backspace

CP Copy Cmd c APL+Insert

CT Cut CMD c Shift+APL+Delete

DB Backspace Backspace

DC Down Cursor Down

DI Delete Item Delete

DK Delete Block Cmd Delete APL+Delete

DL Down Limit Ctrl+Down Shift+APL+PgDn

DO Uncomment Cmd .

DS Down Screen Shift+Down APL+PgDn

ED Edit Cmd e APL+Enter

42 Dyalog APL for UNIX Installation and User Guide

Keycode Command Common
keystrokes Terminal Emulator

EP Escape Esc Esc

ER Enter Enter

FD Forward Cmd f APL+Down

FX Fix Cmd x

HK Hot Key (⎕SM) Cmd u

HO Home Cursor Cmd h

IN Insert Mode Cmd i

JP Jump Cmd j

LC Left Cursor Cursor Left

LL Left Limit Ctrl+Left Shift+APL+Home

LN Line Numbers Cmd l APL+Numpad+-

LS Left Screen Shift+Left APL+Home

MO Move to Outline CMD % Shift+APL+Space

MR Move/Resize CMD m

MV Move block Cmd m

NX Next Cmd n

OP Open line Cmd o

PT Paste CMD p Shift+APL+Insert

PV Previous Cmd p

QT Quit Cmd q APL+Esc

RA Repeat All CMD d

RC Cursor Right Right

RD Redraw Function CMD r APL+Numpad-/

RL Right Limit Ctrl+Right Shift+APL+End

RM Resume All Threads Cmd > APL+Right

43

Keycode Command Common
keystrokes Terminal Emulator

RP Replace String Cmd r

RS Right Screen Shift+Right APL+End

RT Repeat (Do) Cmd d

SC Search Cmd s

SR Redraw Screen Ctrl+l (1)

TB Tab Window Cmd Tab APL+Tab

TC Trace Cmd Enter Shift+APL+Enter

TG Tag Cmd t APL+Numpad-*

TL Toggle Localisation CMD l APL+Numpad-+

TO Toggle Outline CMD o APL+Space

UC Cursor Up Cursor Up

UL Up Limit Ctrl+Up Shift+APL+PgUp

US Up Screen Shift+Up APL+PgUp

ZM Zoom Cmd z Shift+APL+F12

44 Dyalog APL for UNIX Installation and User Guide

Appendix B: Table of keycodes and keystrokes for
PuTTY

Keycodes, their common keystrokes, and the keystrokes specific to the PuTTY ter-
minal emulator.

Notes:
1. APL represents the metakey used as the APL character and command shift
2. Cmd represents the keystroke <Ctrl-x>
3. CMD represents the keystrokes <Ctrl-x><Ctrl-x>
4. The file $DYALOG\aplkeys\xterm is certain to be uptodate and should be

treated as the definitive source of the keycode-keystroke translations

Keycode Command Common
keystrokes PuTTY

AO Comment Out Cmd ,

BH Run to Exit Cmd <

BK Back Cmd b Shift+Ctrl+Backspace

BP Toggle Breakpoint CMD b Shift+End

BT Back Tab Window CMD Tab Shift+Ctrl+Tab

CB Clear Breakpoints CMD B

CP Copy Cmd c Ctrl+Insert

CT Cut CMD c Shift+Delete

DB Backspace Backspace Backspace

DC Down Cursor Down

DI Delete Item Delete

DK Delete Block Cmd Delete Ctrl+Delete

DL Down Limit Ctrl+Down Ctrl+End

DO Uncomment Cmd .

DS Down Screen Shift+Down PgDn

ED Edit Cmd e Shift+Enter

45

Keycode Command Common
keystrokes PuTTY

EP Escape Esc Esc

ER Enter Enter Enter

FD Forward Cmd f Shift+Ctrl+Enter

FX Fix Cmd x

HK Hot Key (⎕SM) Cmd u

HO Home Cursor Cmd h

IN Insert Mode Cmd i

JP Jump Cmd j Shift+Ctrl+Home

LC Left Cursor Cursor Left

LL Left Limit Ctrl+Left

LN Line Numbers Cmd l

LS Left Screen Shift+Left Ctrl+Left

MO Move to Outline CMD % Shift+Ctrl+Up

MR Move/Resize CMD m

MV Move block Cmd m Shift+Ctrl+Delete

NX Next Cmd n Shift+Ctrl+Right

OP Open line Cmd o Shift+Ctrl+Insert

PT Paste CMD p Shift+Insert

PV Previous Cmd p Shift+Ctrl+Left

QT Quit Cmd q Shift+Esc

RA Repeat All CMD d Ctrl+Down

RC Cursor Right Right

RD Redraw Function CMD r Shift+PgUp

RL Right Limit Ctrl+Right

RM Resume All Threads Cmd >

46 Dyalog APL for UNIX Installation and User Guide

Keycode Command Common
keystrokes PuTTY

RP Replace String Cmd r

RS Right Screen Shift+Right Ctrl+PgDn

RT Repeat (Do) Cmd d Shift+Ctrl+Down

SC Search Cmd s

SR Redraw Screen Ctrl+l (1)

TB Tab Window Cmd Tab Ctrl+Tab

TC Trace Cmd Enter Ctrl+Enter

TG Tag Cmd t

TL Toggle Localisation CMD l Ctrl+Up

TO Toggle Outline CMD o Shift+Up

UC Cursor Up Cursor Up

UL Up Limit Ctrl+Up Ctrl+Home

US Up Screen Shift+Up PgUp

ZM Zoom Cmd z Shift+Ctrl+PgUp

Notes:
l If you are using PuTTY or another emulator that uses the Dyalog Unicode

IME, it will be necessary to swap to a non-Dyalog APL keyboard before hit-
ting Ctrl-l; hitting Ctrl-l while in a Dyalog APL keyboard will generate a
Quad symbol.

47

Appendix C: Unused keycodes
Keycodes defined for Dyalog APL, but not used or should not be used in the Dyalog
APL tty version

AB Abort Changes (effectively same as QT)

CB Clear stop/trace/monitor

CH Change Hint

Dc Down with selection

DD Drag and Drop

DH Delete Highlighted section

Dl Down Limit with selection

Dn Down Mouse key n, n∊1 2 3 4 5

Ds Down Screen with selection

EN End of Line

GL Goto Line

HT Horizontal Tab

IF Insert Off

Lc Left with selection

Ll Left Limit with selection

LW Left Word

Lw Left Word with selection

MC Mode Change

PA Paste Ansi

PR Properties

PU Paste Unicode

Rc Right with selection

Rl Right Limit with selection

RW Right Word

Rw Right Word with selection

48 Dyalog APL for UNIX Installation and User Guide

ST Start of Line

TH Reverse Horizontal Tab

UA Undo All

Uc Up with selection

Ul Up Limit with selection

Un Up Mouse key n, n∊1 2 3 4 5

Us Up Screen with selection

49

Index

A

APL385 Unicode Font
downloading 23
intsalling 23

APLCore file 38

B

BuildID in saved files 37

C

Commands
common to all window types 9
editor related 10
overview and description 6
screen manager related 13
search and replace 12
selection related 12
session related 10
tracer related 11
window related 9

Configuring the editor 29
Core file 38

D

Deinstalling
AIX 18
Linux/DEB 19
Linux/RPM 19
UNIX 18

E

Edit Window 5

Entering characters 3
Entering commands 4
Environment variables 24

AP search path 26
buffers and logifiles 27
commonly used 25
conga path 26
default workspace values 26
editor related 28
file control 25
I/O related 25
status window 25
workspace search path 26
workspace size 26

F

File permissions
UNIX 34

FSTAC
UNIX 34

I

I-Beam 4007 35
Installation

AIX 15
Linux/DEB 16
Linux/RPM 15
mininal installation 17
non-default location 16
UNIX 14

Interpreter parameters 21

K

Keystrokes for console/terminal windows 41
Keystrokes for PuTTY 44

L

Linux
APL font support 22-23

50 Dyalog APL for UNIX Installation and User Guide

APL Keyboard
KDE4 22

APL Keyboard support
pre-2012 22
Unity 22
Linux console 22
Linux terminal window 22

M

Magic numbers
AIX 32
file command 31
UNIX 31

Magic numbers; Linux 32
MAXWS 26
Metakey 3

P

PuTTY 23
configuring PuTTY 23
downloading and installing PuTTY 23

Q

quadSH
exit codes 36
stderr 36

R

Running from scripts 31

S

Screen ManagerWindow 5
Session log

UNIX 34
Session Window 5
Signals 35
Starting APL under UNIX 20
Startup script parameters 20

Status line contents 6
Status window output

UNIX 34

T

Trace Window 5

U

UnicodeIME
downloading 23
installing 23

Unused keystrokes 47
Upgrading

from earlier release 19
Upgrading APL 19

later version of same release 19

W

WSPATH 26

